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EFFECTS ON THE ROLL OF ATIRCRAFT

By John M. Hedgepeth, Paul G. Waner, Jr.,
and Robert J. Kell

SUMMARY

An approximate linearized lifting-surface theory is used in conjunc-
tion with structural influence coefficients to formulate a method for
analyzing the aeroelastic behavior in roll of an aircraft. Rolling effec-
tiveness and sileron-reversal speed are computed by the use of a Galerkin-
type procedure. Results obtained for two example configurations by using
this method are compared with the results obtained by using the more
refined method of NACA TN 3067. The agreement is excellent.

INTRODUCTION

In the design of modern high-speed alrcraft, it is generally recog-
nized that aeroelastic effects must be accounted for accurately. One
method which should be capsble of ylelding reliable predictions of the
aeroelastic effects on the roll of supersonic alrcraft has been presented
in reference 1. This method, which mekes use of structural influence
coefficients to determine the distortions and 1ifting-surface theory to
determine the alrloads, involves, however, a considerasble amount of com-
putational labor. For this reason, some means for simplifying the com-
putations without introducing an objectionable amount of error was sought.
The purpose of this paper i1s to describe the resulting simplified method
and to evaluate its accuracy.

In this paper, attention ls confined to the rolling problem. The
actual alrveraft configuretion is left generel, the only restriction belng
that the effects of chordwise bending sre assumed to be negligible. Both
subsonic and supersonic speeds can be treated by the method, but partic-
wlar attention is peid to the supersonic regime in the examples.
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SYMBOIS
A parameter defined by equaetion (13a)
Bg»Bp,Bs parameters defined by equations (13b)

Cze,Czp,CZB rolling-moment derivatives defined by equations (13c)

GJ elementary torsional stiffness of wing

GL(y,n) structural-twist Influence functlon due to unilt concentrated
load at y-axis

auly,n) structural-twist influence fumction due to unit conecentrated
torque

L(y) aerodynemic load per unit span, positive upward

M(y) aerodynamic pitching moment about y-axis per unit span,
positive in positive twist directlon

Mo free-stream Mach number

Pp static pressure at altltude

Po standard static pressure at sea level

aly) serodynamic pitching moment sbout elastic exls per unit
span, positive in positive twlst direction

v free-stream velocity

a ratio of fuselage radius to exposed semispan of wing

b total wing span, 2(al + 1)

cly) wing chord

c mean geometric chord

alleron chord

section 1ift coefficient, L(y)/ac
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Cnm section pitching-moment coefficient about y-axis, M(y)/qc2

cq section pitching-moment coefficient about elastlc axis,
a(y) /ac?

e(y) dilstance measured forward from y-axls to elastlic axis,
expressed as fractlon of local chord

k amplitude of twist mode shape

1 exposed wing semispan

P rolling angular velocity, positive in right-hand sense

pb/2v tangent of wing-tip helix angle

q dynamic pressure

X,y coordinate system (see fig. 1)

B cotangent of Mach angle,\[Mbg -1

o(y) angle of twist of wing (see fig. 1)

81(y) twist mode shape used in Galerkin-type procedure

¢ rolling effectiveness, (pb/EV)F/(pb/ZV)R

3} aileron deflection (see fig. 1)

v4 ratio of specific heats

Subscripts:

F flexible wing

R rigid wing

de effective aerodynamic coefficients due to twist

D parémeters or aerodynamlc coefficients due to unit pb/2V

rev aileron reversal

s} parameters or aerodynamic coefflcients due to unit aileron

deflection
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8 parameters or aerodynemic coefficients due to unit twist
shape

Matrix notation:
[ square metrix
L row matrix

|| column matrix

E J diegonal matrix
ANATYSTS

The analysls proceeds along the same lines as that in reference 1;
that is, the structural deformations are expressed In terms of the air-
loads, the airloads are obtalned, and then the two are combined to form-
ulate the aeroelastlc problem.

Structural Deformations

Consider the configuration shown in figure 1. If the effects of
chordwise bending are assumed to be negligible, the only distortion of
interest in this problem is the twist 6(y) which can be expressed in
terms of the section 1ift L(y) and the section moment about the y-axis
M(y) as follows:

1 1
8(y) = /; G (vsn) L(n) dn + /; a(y,n) M(n) dn (1)

where GL(y,n) and Gu(y,n) are influence functions which define the
wing twist at y due to a unit concentrated load at the y-axis and a
unit concentrated torgque, respectively, at the spanwise station 1. As
wag pointed out in reference 1, these influence functions cen be found
either theoretically (refs. 2, 3, and L4) or, if necessary, experimentally.

IT an elastic axis (defined as a line along which loads can be placed
without producing significant twist anywhere) exists, this equation can
be slmplified to be
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1
o(y) = fo auly,n) a(n) an (2)

The quantity @Q(y) 1s the section torque about the elastic axis and is
given by

ly) = M(y) - e(y) e(y) Liy) (3)

in which e(y) is the distance measured forward from the y-axis to the
elastic axis, expressed as a fraction of the local chord.
Aerodynamic Loads

The section 1ift and pitechlng moment can be expressed in coefficlient
form as

li

L(y) = a ely) ey(y)

(%)

M(y) = q ¢A(y) enly)

By assuming linesrity of The aerodynamics, the loading ccefficients for
steady roll can be wrltten as

ey (¥) = 1, (3) 8(y) + ey (1) T2+ 0y (3) o

r (5)
ea(y) = cag () 6(r) + eap(y) 2+ eng(y) &

J

The principal way in which this analysis departs from that of reference 1
is in the manner of obtalnling the loads due to structural deformation

(the first term on the right-hand side of eqs. (5)). In the method of
reference 1, the loads due to the arbitrary angle-of-attack distributions
which arlse from structural distortlion were determined by an exact applica-
tion of lifting-surface theory; in the present method, these loads are
calculated approximately as can be seen from the following development.
Consider, for example, the meaning of czae(y). This function is actually
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the ratio of the section 1ift coefficient due to structural distortion
to the angle of twist 6(y). In general, czae(y) is dependent, in an

apparently complex fashion, on the shape of the twlst curve; different
ghapes yleld different values of thls function. Fortunately, however,
the value of czae(y) is relatively insensitive to changes in the shape

of o(y). This fact suggests that czae(y) can be adequately approximated

by caleulating it for an angle-of-attack distribution that 1s reasonebly
close to the expected actual mode shape and then by considering this
quantity to be fixed with respect to changes in the mode shape. This
procedure of using an effective lift-curve slope, which has been used in
the past by many investigators (for example, see ref. 5), obviously allows
& considerable simplification of aercelastic analyses.

For ‘the rolling problem, the section roiling derivatives czp(y)
and cmp(y), which must be determined for use in equation (5), can also
serve as a convenient basis for determining czae(y) and cmae(y). The

angle-of-attack distribution that yields these coefficients,

al + ¥y ) (6)

ly) = - (L +a)1

is, for the present aserodynamlc purposes, & fair approximation to the
actual expected mode shape provided that a, the ratio of the fuselage
radius to the exposed semispan of the wing, is not too large. Thus, the
following expressions for czae and cmae are used:

N
(1L + a)2

o e LY &
al + ¥y

1

Czae(Y)

¢ (7)
(A +e)t ()

Cmae(Y) = f;E—:T;f'cmP

Tt follows from the foregoing development that the only aserodynamic
information necessary for the aeroelastic analysis of the rolling problem
is the section rolling and aileron derivatives. At supersonic speeds,
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these quantities are readily obtainable for most reasonsble configurations.
For rectangular wings, a rather complete derivation of the section 1ift
and pltching-moment coefficlents due to rolling and aileron deflection

is included in reference 1. L1ft and pitching-moment distributions due

to roll can be obtained from references 6 and 7 for a wide variety of plan
forms; the 1lift distributlions are given directly, and the pitching-moment
distributions can be found by proper integration of pressure distributions.
Aileron loads can be found by methods such as those 1llustrated in ref-
erence 8; in some cases, two-dimensional strip theory should be adequate.

For subsonic speeds, no such complete coverage has been made. In
the first place, all the theoretical approaches are approximate to some
extent. 1In addition, not nearly so large a variety of plan-form shapes
has been analyzed. However, papers such as reference G afford a consider-
able amount of help in finding the desired aerodynamic derivatives.

Aerocelastic Equations
If the expressions for the loads (eqs. (4) and (5)) are substituted

into the equilibrium equation (eq. (l)), the followlng aerocelastic equa-
tilon results:

1
o(y) = q c a(y,n) cig (n) + @ Guly,n) em, (n)|6(n) ang +
o de Toe

pb

1
15 _/; [c Gr,(¥,n) c}P(n) + 2 Gy(y,n) cmp(n)]dn +

1
qBJ; [c GLly,n) eg (n) + & au(y,n) cmg(n)]dn (8)

For steady roll, the total rolling moment must be zero. Thus,

i :
0= j; c(al + n) [czae(n) o(n) + g% cyp(n) + 3 cza(n)} an  (9)
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SOLUTION OF AEROELASTIC EQUATIONS

Galerkin-Type Procedure

If, for a particular configuration, the values of q and 3 are
given, equations (8) and (9) can be solved simultaneously to yield the
values of twist 6 and rate of roll pb/2V for the elastic alreraft.

In reference 1, these equations were solved by a collocation procedure
that involved the solution of high-order matrix equations. A method

that is considerebly simpler (which tekes the form of the Galerkin method)
is used herein. The solubtlon proceeds as follows:

Tet
6(y) = k 6:(y) (10)

where Gl(y) is an approximation of the actual expected twlst shape.

Note that, although the Galerkin solution generally involves the use of
a serles of such functions, only one term is used for thils particular
application.

If the approximation for 6(y) (eq. (10)) is introduced into equa-
tion (8), and the resulting equation is multiplied by 61(y) end inte-

grated over the exposed semispan of the wing, the following equation is
obtained:

v 2
kf el(y)dy=qkf
0 0

1 1
4 192% ‘/O \/; 9;_(Y) [C ar,(y,n) CIR(T]) + ¢@ Guly,n) cmp(q)} an dy +

1 Al
fo 91(y) [c ar(y,m) clae(") + ¢2 au(y,n) cmae(n):l 81(n) an ay +

1Pl
q8fo fo 91(3{)1:0 G(vsm) eygln) + c® ay(y,n) Cmg(n)]dn dy

(11)
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Tntroduction of equation (10) into equation (9) yields

1 1
b
0= kk/h c(al + c, (n) o dn + = c(al + c, (n) dn +
. ( 1) 1o\ 1(n) dn + == . ( n) 1 1) dn

T
JRECEUERORY (2)

Dividing equations (11) and (12) by & yields two simultaneous

b
equations in two unknowns, k/S and E—/%. The quantity that is actually
2v

sought is the latter; solving for this quantity glves

AC, - q(B Cy. - BsC
b 1 3] 18 S) Ze)
P_/g _ s (13)

v ACy, - QCBGCIP - chle)

- where

L 2
A= f 0,°(y) ay (13a)
0]
1 1
Bo = \/; ui; el(Y)[% CACAY czae(n) + 2 auly,m) cmqe(n{]el(n) dn dy
1 7
e [ [ e atm e+ 2 aden) wyi]o a L )

1 1
Bs = j; j; Bl(y)[c ar,(y,m) C-LS(T]) + c2 ay(y,n) cmﬁ(q)] dn dy
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and

1
1
Cle = — v/\ c(al + 1) Czae(ﬂ) 61(n) dn
21°8(L + a) O

1
CEP = _____iL_____J[‘ c(al + 1) czp(n) dan > (13c)
21°8(1 + a) " O
1 1
Cig = —————/  clal +n) ey (n) an

2128(1 + a) ~ O

The quantitiles Cze, CZP’ and CZB are actually the rolling-moment coeffi-

cients (based on exposed wing area) resulting from a unit mode shape 81,
a unit pb/ZV, and & unit B, respectively.

Rolling effectiveness.~ The rolling effectiveness ¢ ls defined as
the ratio of the rate of roll of the flexible airplane to the rate of
roll that would occur if the airplane were rigld. The rate of roll for
the rigid wing is given by

Therefore, the rolling effectiveness is

By Bs C1
2, 2o

b B Cy
5 3]
<2V/> 1-g/2_fpte
R
b
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Aileron reversal.- The dynamic pressure at aileron reversal can be
found by setting ¢ equal to zero. The result is

1
AQrey = —————— (15)
Bg By CZG
A A 015

Twist mode shape.- The mode shape 65 should be & reasonably good

approximation to the actual twist expected. One possible shape that may
meet this requirement is the twist that would result from the application
of the aileron losds only. This shape is glven by

1
8,(y) = fo [c a(y,n) czg(n) + ¢ Gy(y,n) cmg(n)] dn (16)

Simplificetions for wings with elastic axis.- When an elastic axis
exlsts, the structural equilibrium 1is expressed by equation (2) rather
than equation (1). Therefore, the quantities Bg» Bp, and By (in

egs. (1%b) and the definition of the twist mode shape (eg. (16)) can be
altered by deleting the terms containing GCp(y,n) in equations (1%b)

and (16) and by replacing cmue, Cmyy end cpy With

3
c = c ~-ec
Gae Dye lq

Cqp = Cmp = © 7 > (17

Cq6=cm6—8016

Numerical Evaluation of Integrals

The Galerkin procedure just presented involves the calculation of
a number of integrals. In this sectlon, these integrals are found
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numerically by using Simpson's rule with 10 equal spanwise intervals.
Matrix notetion 1s used to facilitate the representation of the integrals.
The integration scheme and the matrix notation are similar to those set
forth in the section entitled "Matrix Operations” in reference 1.

In metrix form, the quantities defined by equations (13a), (13b),
and (13c) are

a=loxf [s] |ea| (18)
N 7] [~ 71K 1 ]
Bo=| o1 || s ar, S N e ey, |+
3 N L NI N
N . < 7N .
| o1 | S Gy S 6y c2 c%e‘
L ™ L )J L N
< 9 1K N
Bp=| 61 | s Gy, s c ey, | *
- N L 4 = N
> (19)
< 1 T~ ]
| ea | | s Gy S o2 ep,
AN I N
N T 1l KN n
By = L 01 J 8 G, 5 c czg +
- N PR A
< ] 1K ]
L 84 J S Gy S c2 Cmg
SN 4t
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and
\
Cze = ————JL————wgl + yJ S 01 c czae
2123(1 + a)
1
Czp =‘_‘__""_—sz + yJ S cocy > (20)
21°8(1 + a) P
Cig = —1__|_az + y_| S ¢ e
2193(1 + a)
)

In these definitions, L?%J, [éi], and |sl‘ are row, diagonal, and
column matrices, respectively, made up of the assumed twlst shepe; [SJ

is an integrating matrix given by

This pearticular integrating matrix, of course, has been obtalned by
applying Simpson's rule. Other schemes for numerical integration could

be used by appropriately modifylng [S]. It 18 questionable, however,
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whether any increase in accuracy obtained by chenging the integration
rule would be worthwhile for this problem. Note that, for simplicity,
the subscript notation used in reference 1 to denote the location of
elements in the matrices has been dropped in this paper.

The mode shape 67 (eq. (16)) is written in matrix form as

61 ar, S ceg | *+ | O s 2 cmsl(zz)

When an elastic sxls exists, the matrix formulation 1s considerably
simplified by the same procedure mentloned previously; that is, in equa-
tions (19) and (22), the terms involving F&J should be deleted, and

the column matrices involving coefficilents of moments about the y-axis
should be replaced by coefficients of moment about the elastic axis.

APPLICATION

Computational Procedure

As can be seen from the preceding anslysils, the requisite quantities
for determining the aseroelastlc effects on the roll of a particular air-

craft are the structural influence coefficients [GL] and [Gy] end

the aerodynamic derivatives CZP’ cmp, Clys and. Crng * (The derlva-
tives ¢ and ¢ are glven in terms of c and c respective
zGe Moe g Zp my? pe 1y,

by eqs. (7).) The influence coefficients are dependent on the structure
only, but the aerodynamic derivatlves vary with Mach number. If a range
of Mach numbers is to be covered, therefore, these derivatives must be
calculated anew for each value of Mg.

Not only the aserodynamic derivatives but also the mode shape 67
(as calculated from eq. (22)) varies with Mo. The variation of the
derivatives is unavoidable; the veriation of 67 cen often be clrcum-
vented, however, by calculating 8, for a particular Mach number and
then by using this same mode shape for the other values of My. This
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process would Involve little loss in accuracy provided that the 1ift
and pitching-moment distributions due to ailleron deflection do not change
radilcally with Mach number.

With ©3 determined, the calculation of the values of the quantities
appearing in equations (13), (14), end (15) proceeds in a straight for-
ward fashion. (The matrix multiplications in egs. (18), (19), and (20)
should be performed from left to right because the varisble aerodynamic
derivatives are the last terms.) With these quantities determined, the
dynamic pressure at alleron reversal gpey c&n be caleculated from equa-

tilon (15), and the rolling effectiveness ¢ for other wvalues of g can
then be computed from equation (14). This process is repeated for each
Mach number wmtil the entire range is covered.

Sample Calculations

The method derived in this report ls applied to two example config-
urations. Both of these alrcraft bhave two flexible rectangular wings
mounted diametrically on a long cylindrical fuselage; both aircraft have
full-spen, 0.2-chord, trailing-edge ailerons. Attention 1s restricted to
the superscnic-speed reglme.

The two confligurations are shown in figure 2 and are designated as
models 1 end 2; the wings of both models have the same plan-form aspect
ratio of 1/c = 1.5. The wings differ, however, in that model 1 has a
rectangular cross section with a thickness ratio of 0.02, whereas model 2
has an NACA 65A003 cross-sectional shape. The models also differ in
that the value of a, the ratio of fuselsge radius to exposed wing semli-
span, is 0.2 for model 1 and 0.236 for model 2. Both wings were assumed
to be made of solid aluminum slloy.

The torsional influence coefficients for the two models are given
in table I. These influence coefflclents were obtained from an approxi-
mate plate theory which 1s essentially the seme as that of reference L;
however, the analyses of the two models were slightly different: For
model 1, the root was assumed to be completely clamped, and no account
was made for the stiffening flange effect of the bent-up aileron. For
model 2, some root flexibility was allowed, and the flange effect of the
aileron was taken into account approximstely. In both cases, the analyses
indicated the existence of an elastlc axis; therefore, only the torsional

influence coefficients due to torque [GMJ are given in tgble I.

As 1s evident from the preceding discussion, model 1 represents an
idealized configuration (actuaslly the same as the model considered in
ref. 1), and model 2 represents a more realistic aircraft. The following
taeble summarlzes some of the Information necessary for analyzing the models:
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Model 1 Model 2
L P T 1.5
T o I~ 0.2
e o = 0.236
© v « ¢ o 4 s e e s e e 6 e s s 4 e e e e e e e e e e 0 0.0485

No absolute dimensions have been speclfied because, as 1s shown in ref-
erence 1, only the ratios are needed to anslyze the aercelastic-rolling

problem.

The aerodynamic rolling derivetives were obtained for M, = 1.108,
1.202, 1.338, 1.667, and 2.848 for which tables are available in ref-
erence 1. For 1llustrative purposes, the values of Clp and cqP for

the two models at Mg = 1.202 are given in teble II for values of y/1l
between O and 1.0 in 0.1 Increments. The corresponding values of Clae

and cQae are also included in this table.

The aileron derivatives cig and Cqg WeTe found by assuming that

two-dimensional theory is adequate for all statlons except at the tip
where the loads are zerc. With this essumption, the alleron loads become

_ 4 cg N
CY,B = E_é_ -_l—'— O, O-l, 0-2, .« o o 0.9
> (23)
eig = O % = 1.0
2 C C
an = - "B‘ za"<l + 26 - "CE) X': O’ Ocl, 002, « e e On9
r (k)
- N
cq6 =0 7 1.0

where
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The assumed twilst mode shape was calculated from equation (22) and
is given in teble IIT1 for the two models. The shapes have been normalized
by dividing by the tip ordinate and apply for ail Mach numbers as a con-
sequence of the inveriance in the shape of the assumed alleron derivatives
given by equation (2&). In the caleculation of the mode shape from equa-
tion (22), the simplifications resulting from the existence of an elastic
axls were employed. These simplificetions were also used wherever else
applicable.

With these mode shapes, then, the values of A, By, Bp, B CZG’
Cips and Cy were computed from equations (18), (19), and (20) for
each Mach number. These quantitles are tabulated in table IV for the
two medels. TFrom these gquantitles, the dynemlc¢ pressure at reversal and

the rolling effectiveness ¢ can be calculated by equations (15) and (1k),
respectively.

RESULTS AND COMPARISONS

The results of the alleron-reversal calculetions for the two models
are shown by the test-point symbols in figure 3. In this figure the
results are given in the form of a plot of the pressure ratio at rever-

P

sal (—é) against Mach number, where P, is the static pressure at
Fo/ rev

reversal,

P = 2
b= —> Qrev
Mo

and Py 1is the standard sea-level statlc pressure, 2,116 lb/sq £&. For

comparison, the results obtained by the method of reference 1 are also
shown in the figure. The sgreement is seen to be very good, particularly
at the higher Mach numbers.

For the two example configurations comnsidered, the alleron-reversal
results alone provide an adequate test of the accuracy of the method of
this paper. This fact arises from the virtual linearity of the variation
of rolling effectiveness ¢ with dynemic pressure (or pressure ratio).
The rolling-effectiveness curves for model 1 are given in reference 1 and
are almost linear. For model 2, the celculations by the method of ref-
erence 1 exhibited even better linearity. Similar degrees of linearity
also result from the method contained herein. For the above reasons, no
rolling-effectliveness plots are included in this paper.
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CONCLUDING REMARKS

The simplified method outlined in this paper for the prediction of
aeroelastic effects on roll is evidently capable of yielding results
thet compare favorably with those of highly refined methods. Although
the method has been tested for only two confilgurations at supersonic
speeds, there 1ls no reason to suspect that the agreement for other con-
figurations at other speeds would be significantly worse.

The foregoing discussion 1s not meant to imply that this method is
epplicable in all cases. For instance, one of the most worrisome prob-
lems facing the aeroelasticlen is that of chordwise distortion of the
wing; the effects of chordwise distortion, which often appears in wings
with very low aspect ratilo, are not considered in this paper. In addi-
tion, the single-mode Galerkin-type approach used herein may not be good
enough for some configurations; with a highly swept wing having inboard
ailerons, for example, the actual twist distribution changes radically
with dynemlc pressure, and no single assumed twist mode shape could be
expected to yield good results over the entire range of dynamic pressure.
However, such configurations are rarely encountered. ZILastly, it is clear
that any results obtained by this method would be only as good as the
structural and aserodynamic ingredients introduced into the calculations.
For this reason, the methods of structural and aserodynamic analysis must
be rellable. In some cases - at transonic speeds, for instance - resort
would have to be made to experiment to determine parts of the basic

information.

Although the attention throughout this report has been confined to
the rolling problem, the same type of approach could be used for other
static-aseroelastic problems such as torsional divergence and center-of-

pressure shift.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Lengley Fleld, Va., December 16, 1954.
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TABLE I

TORSIONAL INFLUENCE COEFFICIENTS FOR
E{AMPLE CONFIGURATIONS

(a) Modsl 1j % = 5,151 1b/sq £t
)

o] 0.007838 0.015492 0.019693 0.021595 0.023266 0.02%%%kL 0.02435L 0.024%70 0.024704 0.024802
0 0.018492  0.042839 0.061202 0.07128% 0.076821 0.079869 0.081560 0.082520 0.083104 0.083551
) 0.019693  0.061202  0.102832  0.1290%8  0.1k343%  0.181360 0.1557%6  0.1%82%0  0.259T70  €.180879
0 0.021559  0.07128%  0.125038  0.179396  0.210T25  0.227%2  0.2373%66  0.2k2760  0.2460KT 0.4k

0.023266  0.076821  0.1h3433  0.210725  0.266557  0.300855  0.319569  0.3%30F  0.3368:5  0.3k1613

o

1
[a] - &
o) 0.023964 0.07T985% 0.151360 0.227862 0.3006%9 0-559359 0.359576% 0.516260 0.4267h% 0.h37052
o} 0.024351  0.081560  0.1557%6 0.237366  0.319%69 0.395765  0.45T123  0.kgshle 0.5187h9  0.535766

Q 0.024370 0.082520 0.158250 0.242760 0.330304 0.416260 0.255419 0. 5600%2 0.605147 0.634583

o] g.02h70h 0.083104 0.159770 0.2h604T 0.336043 0.h287h5 0.5187h9 0.603147 0.676155 0. 733861

Lo 0.02k&2  0.083331  0.160879  0.2kEkhk  0.3X1615  0.R37THS2  0.535766  0.634%83 0.733861  0.833338

() Hodel 2; 91{- ~ 2,413 Ib/ag £
=3

l_o T o 0 0 ) o o o o 0 0
O 0.0439%  0.072161  0.082136  0.086915  0.088996  0.089503  0.090298  0.090A73  0.0505%%  0.090601
o} 0.0TLL61  0.131088  0.162377  0.176000  0.181933  0.18%%18  0.18%6k6  0.1861k 0.18373  0.186%08
0 0.08213%6  0.162377  0.226297  0.299266  0.2736k2  0.279%0k  0.282638  0.2836k3  0.288k03  0.28W726
0 0.086815  0.176000  0.259856  0.328466  0.358083  0.372685  0.3750Tr  0.381888  0.383195  0.38%9%0

0.088096  0.181933  0.2736k2  0.338053  0.4237%6  O.55TSTS  0.h72337  0.47BBME  0.481857  0.k83612

1
o,
| ]
|

o

ar
0 0.065503 0.184518  0.27990h 0.372685 0. 557575 0.52%516 0.55750% 0.5T72492 0. 57k8 0583468

0 0.090298  0.1856h6  0.282638  0.37907TL  O.kT233T  0.55T505  0.623719  0.658175  0.67hXS6 0.683400

[} 0.090473 0.1851hL 0.283843 0.38.088 o.h78845 0.5T2492 0.658L75 O.T25h1h 0.762157 0.783372
0 0.050%%4 0.186375 0.28430%  0.38%19%  O.381867  0.579kA8  0.6Tk66  0.76215T  0.834629  0.8833%
0 0.090601  0.186%08  0.284726  0.3839%  0.483612  0.5G346L _ 0.683%00  0.783372  ©.8853%9 0.983551_‘
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TABLE IT

AFRODYNAMIC COEFFICIENTS FOR My = 1.202

y/v | ey, (v/1) cap(y/1) | ey (5/1) | eqq (9/2)
Model 1

0 ~1.000000 0 6 .000000 0
d -1.415569 -.038333 5.662275 .155333
.2 ~1.749190 -.105254 5.247568 .315763
.3 -2.015077 -.183793 k. 836184 443105
s -2.212072 -. 266137 k. h2olis51 53227k
.5 -2.33%569 -. 344835 L, 000430 .591149
.6 -2.36737h -.411680 3.551063 617521
T -2.292641. -. 1156080 3.05684h .608105
.8 -2.070005 -.461762 2. 484005 .554115
.9 -1.60L045 -.395341 1.749870 431281

1.0 0 0 0 0

Model 2

0 ~1.145629 0.055563 6. 000000 -0.291000
.1 | -1.546673 .036198 | 5.689547 -.133159
.2 -1.865921 -.014696 5.280627 .0h1662
.3 -2.117637 -.080833 4. 883205 .186398
b -2.300731 -.154066 L. 471233 .299412
5 -2.40860L -.22724h6 k.o4k883 .381624
.6 -2.429104 -.292778 3.591357 L32862
T -2.341335 - 341137 3.091764 Ls0kTT
.8 -2.105803 -. 358047 2.512328 L7169
.9 -1.62649% -. 31476k 1.769672 .3hahT2

1.0 0 0 0 0
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TABLE IIT

NACA TN 3370

TWIST MODE SHAPES USED IN GALERKIN-TYPE SOLUTION

61 for -
¥/
Model 1 Model 2
0 0 0
1 .057166 .167091
.2 .182638 . 331836
.3 . 332681 483678
ok 482540 .616914
5 .619788 LT3027h
.6 .737187 . 822233
.7 . 832533 .893651
.8 - 905312 - 94L6LY
-9 + 9590352 978453
1.0 1.000000 1.000000
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TABLE IV
VALUES OF A, Bg, 3By, Bs, Cle’ Czp, AND 025
1 GJ GJ GJ
Mo Ax = |By X X X c c C
D 52| R e LI
Model 1
1.108(0.423%98(0.087669 |-0.084086 |-0.094806 [0.522170 | -0.526021 |0. 462000
1.202| .L23398| .0562k2 | -.053038| -.067719| .5:3180} -.55216k| .330000
1.338| .Lk23398| 035716 | -.033229| -.050789| .510437| ~.514456| .2k7500
1.6671 .423398| .016822 | -.015677| -.033859| 420363} - 4i7hko| 165000
2,818 .423398] 004079 | -.003882| -.016930| .252679| -.248333| .082500
Model 2
1.108(0.510760|0.128009 |-0.112045 [-0. 174174 [0.630158 [-0.562615 [0. 472194
1.202) .510760( .067671 | -.058776} -.124h10 | 649197 ~.581382] .337281
1.338| .510760| .03%2038 | -.028037 | -.093307| .603209| -.537432| .252961
1.667| .510760! .005056 | -.005035 | -.062205| .488809| -.L33h8L | .168641
2.848} .510760|-.006153 .005059 | -.031102} .288649| -~.256513 | .084320
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Figure 1l.- Configuratlion considered in aeroelastlc analysis.
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